∫√(x^2+A)dx
$ \sqrt{x^2+A} = t - x …①$ \Longrightarrow $ t = x + \sqrt{x^2+A} …①'
①の両辺を2乗して整理して:$ A = t^2 - 2 x t $ \Longrightarrow $ x = \frac t2 - \frac{A}{2t} …②
$ \boxed{ ここで x = \frac{\sqrt{A}}{2}\left( \frac{t}{\sqrt{A}} - \frac{\sqrt{A}}{t} \right) より \frac{t}{\sqrt{A}} = e^u と置くと x = \sqrt{A}\sinh u となる。 }
②を①に代入して:$ \sqrt{x^2+A} = t - \frac t2 + \frac{A}{2t} = \frac t2 + \frac{A}{2t} …③
②の両辺を$ t で微分して:$ \frac{dx}{dt} = \frac12 + \frac{A}{2t^2} $ \Longrightarrow $ dx = \left(\frac12 + \frac{A}{2t^2}\right)dt …④
$ \int \sqrt{x^2+A} dx = \int \underbrace{ \left(\frac t2 + \frac{A}{2t}\right) }_{(3)} \underbrace{ \left(\frac12 + \frac{A}{2t^2}\right)dt }_{(4)}
$ = \int \left(\frac{t}{4} + \frac{A}{2t} + \frac{A^2}{4t^3} \right)dt = \frac{t^2}{8} + \frac A2 \ln |t| - \frac{A^2}{8t^2} + C
$ = \frac12\left(\frac{t}{2}\right)^2 - \frac12\left(\frac{A}{2t}\right)^2 + \frac A2 \ln t + C = \frac12 \underbrace{ \left(\frac{t}{2}-\frac{A}{2t}\right) }_{(2)} \underbrace{ \left(\frac{t}{2}+\frac{A}{2t}\right) }_{(3)} + \frac12 \ln \underbrace{ |t| }_{(1)} + C
$ = \frac12 x \sqrt{ x^2 + 1 } + \frac12 \ln |x+\sqrt{x^2+A}| + C
絶対値は$ A<0 で積分区間が$ \{ x ; x \leqq -\sqrt{-A} \} に含まれるとき必要
$ A=1 と置いて
$ \int_0^1 \sqrt{x^2+1} dx = \underbrace{ \int_1^{1+\sqrt2} }_{(1)'} \underbrace{ \left(\frac t2 + \frac{1}{2t}\right) }_{(3)} \underbrace{ \left(\frac12 + \frac{1}{2t^2}\right)dt }_{(4)}
$ = \int_1^{1+\sqrt2}\left(\frac{t}{4} + \frac{1}{2t} + \frac{1}{4t^3} \right)dt = \left[ \frac{t^2}{8} + \frac12 \ln t - \frac{1}{8t^2} \right]_1^{1+\sqrt2}
$ = \frac{(1+\sqrt2)^2 - 1^2}{8} + \frac{\ln (1+\sqrt2) - \ln 1}{2} - \frac18\left(\frac{1}{(1+\sqrt2)^2} - \frac1{1^2} \right)
$ = \frac18 \left( 3+2\sqrt2 - \frac{1}{3+2\sqrt2}\frac{3-2\sqrt2}{3-2\sqrt2} \right) + \frac12\ln (1+\sqrt2)
$ = \frac18 \left( 3+2\sqrt2 - 3+2\sqrt2 \right) + \frac12\ln (1+\sqrt2) = \frac{\sqrt2}{2} + \frac12\ln (1+\sqrt2)