G-Eval: NLG Evaluation using Gpt-4 with Better Human Alignment
G-Eval: NLG Evaluation using Gpt-4 with Better Human Alignment
論文.icon
Date
2023-02-01
Abstract
The quality of texts generated by natural language generation (NLG) systems is hard to measure automatically. Conventional reference-based metrics, such as BLEU and ROUGE, have been shown to have relatively low correlation with human judgments, especially for tasks that require creativity and diversity. Recent studies suggest using large language models (LLMs) as reference-free metrics for NLG evaluation, which have the benefit of being applicable to new tasks that lack human references. However, these LLM-based evaluators still have lower human correspondence than medium-size neural evaluators. In this work, we present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm, to assess the quality of NLG outputs. We experiment with two generation tasks, text summarization and dialogue generation. We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin. We also propose analysis on the behavior of LLM-based evaluators, and highlight the potential concern of LLM-based evaluators having a bias towards the LLM-generated texts.
どんなもの?
先行研究と比べてどこがすごい?
技術や手法のキモはどこ?
どうやって有効だと検証した?
議論はある?
次に読むべき論文は?
Authors