Focal Loss for Dense Object Detection
https://gyazo.com/1131a58400467e09348132c708314b8a
これは不均衡データに対処するための損失関数Focal Lossを提案した論文なのですが, とにかくそのシンプルさにやられました. 画像のFLの式を見てください. たったこれだけです. ptは正解ラベルに対する予測値なのですが, ptが大きければ大きいほど損失値をしっかり抑えられるように設計された関数となっています. 正解ラベルに対して0.6と予測するサンプルを学習に重要視せず, 0.3とか0.1とか予測しちゃうサンプルにしっかりと重要視するのです. 自分も7月くらいまでは不均衡データに関する研究していたのですが, 自分が考えた多くのアイディアが結局Focal Lossの下位互換に帰結してしまうのです. しかもこの損失関数の汎用性は非常に高く, あらゆるタスクに入れることができます. (Submitted on 7 Aug 2017 (v1), last revised 7 Feb 2018 (this version, v2))